Bounded sets in projective tensor products of hilbertizable locally convex spaces
نویسندگان
چکیده
منابع مشابه
FUZZY BOUNDED SETS AND TOTALLY FUZZY BOUNDED SETS IN I-TOPOLOGICAL VECTOR SPACES
In this paper, a new definition of fuzzy bounded sets and totallyfuzzy bounded sets is introduced and properties of such sets are studied. Thena relation between totally fuzzy bounded sets and N-compactness is discussed.Finally, a geometric characterization for fuzzy totally bounded sets in I- topologicalvector spaces is derived.
متن کاملFuzzy projective modules and tensor products in fuzzy module categories
Let $R$ be a commutative ring. We write $mbox{Hom}(mu_A, nu_B)$ for the set of all fuzzy $R$-morphisms from $mu_A$ to $nu_B$, where $mu_A$ and $nu_B$ are two fuzzy $R$-modules. We make$mbox{Hom}(mu_A, nu_B)$ into fuzzy $R$-module by redefining a function $alpha:mbox{Hom}(mu_A, nu_B)longrightarrow [0,1]$. We study the properties of the functor $mbox{Hom}(mu_A,-):FRmbox{-Mod}rightarrow FRmbox{-Mo...
متن کاملRESTRICTED p-CENTERS FOR SETS IN REAL LOCALLY CONVEX SPACES
Let X ,Z be a pair of real linear spaces put in duality by a separating bilinear form 〈, 〉, and endowed with compatible locally convex topologies respectively. A subset F of X is said to be p-bounded if sup p(x) : x ∈ F < ∞. We denote the collection of all nonempty p-bounded subsets of X by p(X ). Given x ∈ X , F ∈ p(X ), and V ⊆ X , write rp(F ; x) = sup p(y − x) : y ∈ F , radp(F ;V ) = inf rp...
متن کاملOn the dual of certain locally convex function spaces
In this paper, we first introduce some function spaces, with certain locally convex topologies, closely related to the space of real-valued continuous functions on $X$, where $X$ is a $C$-distinguished topological space. Then, we show that their dual spaces can be identified in a natural way with certain spaces of Radon measures.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Studia Mathematica
سال: 1991
ISSN: 0039-3223,1730-6337
DOI: 10.4064/sm-99-3-185-198